解答結果


○

正解は「正しい」です。

あなたの解答

  • あなたの解答は「正しい」です。

バックグラウンドの線量率

以下の文章は正しいですか?
『原子力発電所事故の影響がないと仮定した場合のバックグラウンドの線量率を推定できる。』

解説文

まとめ

放射性セシウムによる光子のエネルギーは限られているので、それより高いエネルギーでの計数値を用いることで、放射性セシウムが降下していないことを想定したバック・グラウンドの線量率を推定することができます(もちろん限界もあります)。

問題点の整理

BGの評価

事故による追加線量の推計ではBGの評価が不可欠

BGは場所によって異なる

  • より正確に把握するのであれば場所毎のBGの値を推計する必要がある
    • KURAMA-IIなどを用いた方法では場所毎のBG値の把握は容易(10分程度の測定でデータが得られる)
  • 事故影響を受けた地域でのBGの計測では事故の影響を含みうる

BG評価の幾何学的条件

Hp(10)測定ツールでのBGの評価はon phantomで行うべきか否か

  • 個人線量測定協議会では見解を示していない(課題とすべきか否かを含めて)
  • 日本保健物理学会でもこの件に関して見解を示していない(課題とすべきか否かを含めて。なお、「必ずしもバックグラウンドを過剰に差し引いたとは言えないと考えられ」るとありますが、過剰に差し引きしていたとして見直した自治体例があります(もっとも、日本保健物理学会の見解は、限定した範囲での議論であり、この見直しのことまでは議論していないとも考えられます))。 また、「通常の個人線量測定では、測定対象となる被ばく環境でのバックグラウンドを被ばく源のない場所での測定値をバックグラウンドとして扱います。」とありますが(「通常の個人線量測定では、評価対象となる被ばく源のない場所での測定値を被ばく環境でのバックグラウンドとして扱います」との意味だと思います)、「被ばく源のない場所」が「関心対象の線源からの線量が十分に小さい」だと考えられますが、関心対象である事故により放出された放射性物質からの線量が小さくても、自然放射線の量がより大きい場所での測定値をBGとしてもよいのかという疑問に向き合えていないと受け止められることも課題であると思われます。
  • ウラン系列が平衡となり、その10倍の放射能濃度を持つK-40を含む建物内を仮定すると、水ファントム(高さ45cm 横幅30cm 奥行20cmのJIS-Z4915準拠品)を想定すると、ファントムを使わないことで2割程度、BG放射線に対する応答が大きくなると考えられます(胸部を仮定すると数%)。

放射線防護標準化委員会

ここで提示する方法の限界

  • KURAMA-IIはエネルギー応答特性が確認されたツールで比較的質の良いスペクトルデータが得られると考えられます。
  • このため、比較的質の良いH*(10)を推定できると考えられます。
  • しかしながら、個人線量計でのHp(10)測定をシミュレーションするには、個人線量計をどのような幾何学的条件で用いたのかの情報が極めて重要となります。
  • 本来の事業の目的が、集団内でより放射線に曝露している方を把握することである場合には、Hp(10)測定の不確かさを厳密に考える必要は乏しいでしょう。
  • しかし、事故に由来した追加の被ばく線量を精度よく推計するためには、バックグラウンドの線量の推定の質を向上させる必要があります。このため、より精度の良いHp(10)測定を行うには、さらに検討が必要となります。

個人線量計によるバックグラウンドの線量評価においてどのような疑問が持たれているか?

  • 体による遮へいの扱いが課題ではないか
  • 体による遮へいを加味しないバックグラウンド評価は不適切ではないか
    • なぜなら、個人線量の測定での正味値の評価で、差し引くバックグラウンドが過大すぎると得たい値を過小評価するので

事故でどれだけ増えたかを知りたい

   
母親 事故でどれだけ線量率が増えたかを知りたい…
エミ 安心させたいと思うのか場所によって線量率が高いことがあると言われることがあって安心したいと思いたい気分の時には受け入れられても、慎重であるべきという気分の時には反発してしまう…
母親 自治体での個人線量測定でバックグラウンドの取り扱いに違いがあることも不思議な気持ちです
アオイ それぞれ良い方法を模索した結果ではないかしら
母親 事故による増加分の線量を素朴に知りたいです…

スペクトルデータから放射性セシウムの影響を引き算できるか?

   
母親 福島県内でも使われているKURAMA-IIで得られるスペクトルデータから放射性セシウムによるピークを引いて、そのスペクトルデータからバックグラウンドの線量率を推定できないかしら?
エミ スペクトルは光電ピーク以外にコンプトン効果などの部分がありますし、さらに様々な核種のスペクトルの積み重ねになっているので、単純にピークだけは差し引けないと思うけど、核種ごとのスペクトルを順次差し引いていけば原理的には可能だと思う
アオイ ピールオフ法ですね
母親 現実に行うとなると、検出器の形状や放射線源の分布状況から正しくスペクトル形状を予測する必要があり、精度よく行うのは大変そうです…
エミ 時刻で一貫したトレンドで変化しているのはCs-134とCs-137なので、その変化からバックグラウンドレベルが推定できないかしら…

放射性セシウムの散乱を考慮できるか?

   
母親 空間線量率のうち放射性セシウムのγ線によるものは散乱線が支配的だと思うけど、その散乱の程度をこの方法では補正できないのではないかしら
エミ 放射性セシウムからのγ線の空間線量率への寄与のうち、散乱分への寄与がどの程度かは、この方法だと分からないと思います…
アオイ この方法で得られる情報は、空間線量率のうち、自然放射線がどの程度寄与しているかに過ぎないですね
母親 自然放射線の散乱分をどう考えるかがもっともクリティカルではないかしら

引きすぎがあるとして、その程度を問題にすべきなのか?

   
母親 バックグラウンドの線量が過大だと事故による線量を過小評価するというのはその通りだと思うけど、その程度が問題ではないかしら
エミ 線量分布が対数正規分布にほぼ従うことに着目して低線量域での振る舞いを調べると良いと思うけど、その結果、大きな違いはないので、意義としては乏しいのではないかという意見ですね
アオイ 比較的低線量の集団で追加線量が検出限界を超えていない割合が多い(?)と思われるデータでバックグラウンドの設定が妥当かどうかが問われているけれども(追加で疑問が呈されている例)、この方法で検証が可能だと思う

事故前の取り組み例

鹿児島県環境保健センター

脇田安彦、藤崎学 、四反田昭二他.環境放射線測定局周辺における自然放射性核種の寄与等について

放医研

日本全国の自然空間放射線量の調査
わが国の屋内ラドン濃度と宇宙線線量

放射線地学研究所

日本における地表γ線の線量率分布

スペクトルデータから自然放射線の影響を引き算している例

   
母親 原子力発電所の事故だと環境に残る人工核種は概ね1 MeV未満のγ線を出すことに着目し、1 MeV程度以上のスペクトル計数率から天然核種の寄与を推定することが可能ではないかしら…
アオイ その例です

KURAMA-IIでの事例

安藤 真樹、松田 規宏、斎藤 公明.KURAMA–II を用いた走行サーベイ測定による東日本での 天然放射性核種の空間線量率評価
走行サーベイによる空間線量率測定とガンマ線成分の同時測定
走行サーベイによる道路及びその近傍における空間線量率の測定 (KURAMA の高度化を含む)
第3回環境創造シンポジウム

同様の試み

Ogura, K.; Hosoda, M.; Tamakuma, Y.; Suzuki, T.; Yamada, R.; Negami, R.; Tsujiguchi, T.; Yamaguchi, M.; Shiroma, Y.; Iwaoka, K.; Akata, N.; Shimizu, M.; Kashiwakura, I.; Tokonami, S. Discriminative Measurement of Absorbed Dose Rates in Air from Natural and Artificial Radionuclides in Namie Town, Fukushima Prefecture. Int. J. Environ. Res. Public Health 2021, 18, 978.

昭島市

放射能測定結果

その他での事例

(独)放射線医学総合研究所 (独)日本原子力研究開発機構:東京電力(株)福島第一原子力発電所事故に係る個人線量の特性に関する調査
空気カーマ率を意味している。周辺線量当量から実効線量への換算と同一 の方法で、空気カーマから実効線量の換算係数を算出。⇒0.75 [Sv/Gy] 福島県内の平常時のバックグラウンドの空気カーマ率として0.04 μSv/h、実効線量率として、0.03 μSv/hとしている例
ラドン除去手法のシステム化

参考資料等

EC

RADIATION PROTECTION NO 160. Technical Recommendations for Monitoring Individuals Occupationally Exposed to External Radiation
An important input quantity, in particular for the low dose performance of a dosemeter, is the subtraction of the dose due to natural background radiation.

The methods of natural background subtraction are to use either an average value based on customer geographic spread (usually a national average) or specific customer or location values. In Europe, the cosmic radiation photon and directly ionizing component is about 300 μSv per year. The terrestrial photon natural background ranges upwards from about 300 μSv per year, with considerable geographic variation (thus the total ranges upwards from about 600 μSv) [UNSCEAR 2000]. Nevertheless, for monthly issue, the use of a geographic spread average background between readouts, although adding to the total uncertainty of dose assessment, will for many services still enable the recommended accuracy requirement to be met. For example, where for whole body photon/electron dosemeters, the difference between a local and the geographic spread average natural background radiation dose is no greater than about 100 μSv per year, it would seem to be acceptable to simply use the average value. The value of 100 μSv is 10 % of the lower limit of 1 mSv for which the recommended uncertainty bound is 30%.
Obviously for those instances where a dosimetry service supplies customers in areas where the terrestrial natural background is significantly greater than, or less than (an extreme case is in submarines) the national average, the local natural background dose rate will need be taken into account. Local background variation can be taken into account by the use of control dosemeters which are supplied by an ADS to a customer, and stored at the location where workers’ dosemeters are kept when not being used. In some cases, subtraction of transit doses may be done. For dosemeters issued to customers in Europe but issued and processed in the USA, natural background radiation transit doses (return trip) for an electron/photon dosemeter may be about 30 to 50 μSv.
The contribution to photon/electron dosemeters of a few tens of μSv from the dosemeter wearer’s incorporated 40K can be neglected, as can, in general, the neutron cosmic radiation background. This is about 100 μSv per year, but about half is from neutrons of energy greater than 20 MeV, measured with a lower response by many detectors. A method to determine the natural background distribution is described [Stadtmann, 2007] and a method to estimate the uncertainty resulting from the variability of the natural background by [van Dijk, 1996], both methods using an analysis of the results for issued dosemeters. These methods are based on the assumption that the majority of issued dosemeters are only exposed to natural background radiation. Mean values and standard deviations can then be derived from an examination of the relationships of dose and number of days of exposure using regression analysis.

9.2 Recommendations

It is recommended that:

  • Approval procedures for dosimetry services in relation to dose reporting should: a) state the dose information needed on the report, e.g. dose in measurement period, annual and/or 5-year accumulated dose; b) state detection limits of the dosimetry system; c) detail background subtraction methods; d) state the destination of the dose report; e) give details about the storage of monitoring records and reported dose values; f) state monitoring and reporting periods.

9.7 NDR links to other data sources and databases

9.7.1 Links

NDR may periodically share information with international organizations concerned with the characterization of occupational exposure such as ISOE, ESOREX and UNSCEAR. The sharing of dose results to perform occupational exposure studies reveals the need for harmonized procedures for generating, storing and reporting results. Different dose measurement methods may be used, however background dose subtraction methods should be considered, as well as the use of detection limits instead of recording levels. The use of notional doses, that is, a dose value on a record that does not correspond to an actual dose received by a worker, should also be avoided.

IAEA

IAEA Safety Standards Series No. RS-G-1.8

Environmental and Source Monitoring for Purposes of Radiation Protection

COVID-19の蔓延下でのBG評価用素子の設置期間の延長とBGの評価の質の関係も扱われている例

Individual monitoring with radiophotoluminescence (RPL) passive integrating dosimeters

5. PROGRAMMES FOR MONITORING IN PRACTICES AND INTERVENTIONS

MONITORING IN SITUATIONS OF CHRONIC (PROLONGED) EXPOSURE

External exposure
5.123. Monitoring of human exposure due to external sources of gamma radiation should be carried out by measurement of dose rates in air at locations accessible to the public. To evaluate the contribution of the radioactive contamination at the site to the effective dose, the background dose rate should be estimated and subtracted from the measurement data.

ASSESSMENT OF DOSES FROM NORMAL DISCHARGES

External exposure
7.7. The assessment of external irradiation from the source is straightforward, at least in principle. When the source is discrete, the radiation fields in its vicinity may be measured (the natural background radiation should be estimated and subtracted from the results) or calculated using simple techniques.
7.8. External exposure due to radionuclides present in the plume or on the ground is generally difficult to assess from direct radiation measurements because variations in the natural background radiation are usually larger. Nevertheless, in many cases such external exposure due to radionuclides can be derived from spectrometric measurements of air contamination and ground deposition using established contamination to dose conversion models and the proportion of the year that a member of the critical group is likely to spend in the area. Reductions in exposure due to shielding by building structures as well as increases in exposure due to deposition on the walls and roofs of buildings can be taken into account if data on building structures are available or by using published default shielding factors.
Internal exposure
7.14. The calculation of doses from the results of environmental monitoring requires appropriate processing of the monitoring results. The background radiation, whether natural background radiation or that due to fallout from nuclear weapon tests, should be identified, generally by means of comparison with results from monitoring in an area that has not been contaminated (if such an area has been well characterized); for the calculation of doses due to releases from a source or a practice, these background radiation levels should be subtracted from the results for contamination. If the contamination is due to releases from several sources, the total dose should be calculated on the basis of environmental monitoring measurements, but it is generally difficult to attribute fractions of the dose to each source.

7. CONSIDERATIONS IN DOSE ASSESSMENT

DOSE ASSESSMENT IN EMERGENCIES

External exposure
7.25. External exposure due to the deposition of radionuclides on the ground can be derived from direct radiation measurements made after the plume has passed (when the dose rate is well above natural background levels) or when spectrometry has been performed. It can also be derived from measurements of radionuclide concentrations made on environmental samples (e.g. soil, grass and rain water). External doses due to the deposition of radioactive materials are generally calculated for a limited time period, typically of a day or a few days, that is consistent with the implementation of urgent protective actions (sheltering or evacuation). For such short periods, deposition can be assumed to be constant except for the radioactive decay of short lived radionuclides. The effect of shielding by building structures may be taken into account provided that data are available and that sheltering has been effective..

DOSE ASSESSMENT FOR SITUATIONS OF CHRONIC (PROLONGED) EXPOSURE

External exposure
7.34. The set of measurements of dose rates performed at various locations where members of the critical group usually reside, both outdoors and indoors, can be used directly to assess the existing external doses. To define the contribution of a particular radiation source to the external dose, methods of field gamma spectroscopy should be applied with subsequent assessment of the dose due to particular radionuclides or subtraction of the background radiation as determined in similar conditions.

UNCERTAINTIES IN DOSE ASSESSMENTS

7.48. In the conduct of practices, rates of release of radionuclides are generally low and the possibilities for a detailed analysis of exposure might be limited if, for example, the external dose rate attributed to releases is of the same order as the fluctuations in the dose rate due to background radiation. In this case, the dose can be assessed as a value less than the dose estimated with the minimum detectable activity for the measurement used as input data. This dose assessment can be assigned an estimated uncertainty that takes into account the uncertainties in the parameters of the dosimetric models.

8. INTERPRETATION OF MONITORING RESULTS

GENERAL CONSIDERATIONS

8.9. To avoid the misinterpretation of monitoring data, a thorough understanding of the conditions of sampling and measurement is necessary. The types of conditions include:
— The geographical location;
— The date and time;
— The duration of sampling;
— The procedures for sampling and measurement;
— A clear understanding of the physical quantities measured;
—The background radiation levels and radionuclide concentrations in the environment.
Compliance with criteria for public exposure
8.24. The dose received by individuals in the population should be derived from the results of environmental monitoring, with the natural background taken into account. The background levels should be subtracted from the results of the measurements so as to assess the doses due to practices only. Both statistically significant measurement data (above the detection limit) and measurements under the detection limits can be used for dose assessment purposes with the associated uncertainties taken into account.

有意でなくても、同等とは言えないこともあります。

8.25. The source related doses can also be derived from the results of environmental monitoring by removing the base line, including natural background radiation and other sources. Such source related doses should nevertheless be interpreted cautiously since the fractions of radiation or radionuclide concentrations that are attributable to other sources may be subject to large uncertainties.
Data from individual monitoring
10.11. Information on measurements of external doses for individuals should include personal information, dates and times of the issue and collection of the dosimeter, device readings, and procedures for calibration and for the determination of the radiation background. Information from in vivo measurements of radionuclide activity in the human body should include personal information, dates and times of the measurements, and the activity detected in the body.

Safety Reports Series No. 64

Programmes and Systems for Source and Environmental Radiation Monitoring

Document Preparation Profile DS505

Source Monitoring, Environmental Monitoring and Individual Monitoring for Protection of the Public and the Environment

3. JUSTIFICATION FOR THE PRODUCTION OF THE DOCUMENT

In addition, the update will also consider relevant sources of information from other organizations (e.g. UNEP, ICRU, UNSCEAR, ICRP), as well as lessons from experience (e.g. the IAEA Report on the Fukushima Daiichi Accident).

読み物

バックグラウンド評価の大切さ

庄司 美樹.数値の意味するもの

CsIでのエネルギー特性

厚み2cmの検出器に入射した光子の相互作用

30 keVの光子

30 keVの光子

同じ厚みの水の場合

同じ厚みの水の場合

Cs-137からの光子

30 keVの光子

2 MeVの光子

2 MeVの光子

10 MeVの光子

10 MeVの光子

600 MeVのミュー粒子

600 MeVのミュー粒子

注意書きの例

コントロール用ガラスバッジの保管方法および取扱上の注意

【保管方法】

『コントロール用ガラスバッジは、除染作業以外の自然放射線(日常生活時)の値を差し引くために使用するものです。ご使用期間中は、汚染された土壌等の影響のない放射線量の低い場所(屋内で常温常湿)に保管してください。』

【注意】

『コントロールを除染作業場所の管理詰め所などに保管したまま、個人用のガラスバッジを自宅などにお持ち帰りした場合、差し引くコントロール値の方が高くなります。コントロールは、できるだけ放射線量の低い場所に保管してください。』

バックグラウンドの評価の問題で追加線量が評価できなかった例

参加医療機関の線量計の保管場所・返却遅延等の関係でバックグラウンドが高くなり解析不能となった。

校正場のバックグラウンド

JISZ4511:2018 X線及びγ線用線量(率)測定器の校正方法

8.6.8.3 環境バックグラウンド及び漏えい電流の補正

必要に応じて,環境バックグラウンド放射線による影響及び8.6.4に規定する漏えい電流の影響について補正する。

表A.1−放射線に関する量の基準条件及び標準試験条件

影響量 基準条件 標準試験条件(特記がない場合)
γ線エネルギー 137Cs a) 137Cs
入射角 基準の向き 基準の向き±5°
放射能汚染 無視できる 無視できる
放射線のバックグラウンド 周辺線量当量率H*(10)≦0.1 μSv・h−1 周辺線量当量率H*(10)≦0.25 μSv・h−1

注a) 測定器のエネルギー定格範囲に137Csが含まれない場合は,他のエネルギーの標準場でもよい。

附属書JC

(参考)

低線量率における実用測定器の校正方法

JC.l 一般 一般的に線量(率),エネルギーなどの測定対象となる範囲は幅広く,さらに,測定条件も多岐にわたるため,測定器には広範囲での校正が求められる。言い換えると,全ての測定対象範囲がこの規格の適用範囲に収まるわけではなく,また,許容範囲を,満足できるわけではない。例えば,環境レベルに近い1 µSv・h以下の線量率測定に対するニーズは高く,据置形モニタのような測定器は,現実的に設置現場での校正しか可能でない場合もある。 この附属書は,この規格に基づいて校正した8.4の標準測定器を実用標準器として,箇条9の規定に基づき,この規格の適用範囲外である10 µGy・h−1未満の空気カーマ率,及び/又は散乱線が5 %を超える放射線場の校正方法について参考として記載するものであって,規定の一部ではない。
注記1 8.7.3に示す低線量率の空気カーマ率標準場の設定には,8.4の標準測定器から移行するために複数の仲介測定機器を用いることもある。
注記2 低バックグラウンド環境の標準場設定が必要な場合,遮蔽体を用いて,低バックグラウンド環境を設定できる(参考文献[1],[2]及び[3]参照)。

議論例

日本保健物理学会2021年度企画シンポジウム国際対応委員会セッション「IAEA DS499(免除)及びDS500(クリアランス) の動向と論点―総合討論」.保健物理,56 (3), 156 ~159 (2021)
山岳地域における,原子力発電所事故由来の残留 放射線を議論する場合,自然界由来の放射線による影響を考慮しないと,測定された数値だけが独歩することが懸念される。

不適切な取り扱い例

施設定期検査における事業者検査記録の記載不備について

薬事行政での取り組み

生物学的同等性(BE)ガイドライン等

食品衛生分野

食品安全施策等に関する国際協調のあり方に関する研究

検出器汚染への対応

小林兼好.表面アルファ線検出器


空白セル

おすすめ

Social issue

キーワードの例

新着情報

決定しきい値(決定限界)
不確実性のロンダリング装置(としての統計学?)
ALPS treated water
シングル・ボイス
電子スピン共鳴法を用いた線量推計
非医療目的での放射線を利用した人体のイメージング

最終更新記事

食品の出荷制限の解除
甲状腺検査の結果の解釈を巡る議論 Discussions on the interpretation of thyroid survey from epidemiological views
プール解析 pool analysis
ALPS treated water
バックグラウンドの線量率
自然の放射性物質のリスク
半減期 half life
ホット・パーティクル hot particle
きのこを用いた親子の食育ワークショップ Food education workshop targeting parents and children
余命損失 Loss of life expectancy

記事一覧

学習問題(分野別)
用語(五十音順)


アクセス数トップ10

ホット・パーティクル hot particle
子孫核種 progeny nuclide
原子力発電所事故後の体表面スクリーニング
余命損失 Loss of life expectancy
県民健康調査 Fukushima Health Survey
サブマージョン submersion
安定ヨウ素剤 stable iodine tablets
放射線リスクコミュニケーション 相談員支援センター Support center for social workers engaged in recovery from the nuclear disaster
薪ストーブをめぐる近隣トラブル
不当表示 misleading representation




更新日:2024年04月15日 
登録日:2017年07月05日 

スマートフォン | デスクトップ

© 2020 国立保健医療科学院 Some Rights Reserved.